首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2134篇
  免费   130篇
  国内免费   7篇
化学   1440篇
晶体学   2篇
力学   54篇
数学   421篇
物理学   354篇
  2023年   53篇
  2022年   28篇
  2021年   66篇
  2020年   108篇
  2019年   86篇
  2018年   28篇
  2017年   54篇
  2016年   103篇
  2015年   84篇
  2014年   84篇
  2013年   94篇
  2012年   133篇
  2011年   149篇
  2010年   76篇
  2009年   56篇
  2008年   118篇
  2007年   90篇
  2006年   89篇
  2005年   73篇
  2004年   56篇
  2003年   48篇
  2002年   52篇
  2001年   20篇
  2000年   17篇
  1999年   11篇
  1998年   16篇
  1997年   9篇
  1995年   8篇
  1992年   8篇
  1986年   9篇
  1985年   13篇
  1984年   8篇
  1983年   8篇
  1982年   10篇
  1981年   12篇
  1980年   10篇
  1979年   13篇
  1978年   7篇
  1977年   13篇
  1976年   10篇
  1975年   9篇
  1970年   8篇
  1968年   9篇
  1967年   8篇
  1934年   11篇
  1933年   8篇
  1930年   8篇
  1919年   7篇
  1905年   7篇
  1881年   9篇
排序方式: 共有2271条查询结果,搜索用时 31 毫秒
101.
The double crossover junction (DX) is a fundamental building block for generating complex and varied structures from DNA. However, its implementation in functional devices is limited to the inherent properties of DNA itself. Here, we developed design strategies to generate the first metal–DX DNA tiles (DXM) by site‐specifically functionalizing the tile crossovers with tetrahedral binding pockets that coordinate CuI. These DX junctions bind two CuI ions independently at distinct sites, display greater thermal stability than native DX tiles upon metalation, and melt in a cooperative fashion. In addition, the right‐handed helical chirality of DNA is transferred to the metal centers. Our tiles display high metal ion selectivity, such that CuII is spontaneously reduced to CuI in situ. By modifying our design over three generations of tiles, we elucidated the thermodynamic and geometric requirements for the successful assembly of DXM tiles, which have direct applicability in developing robust, stable DNA‐based materials with electroactive, photoactive, and catalytic properties.  相似文献   
102.
Realizing the full potential of oxide‐supported single‐atom metal catalysts (SACs) is key to successfully bridge the gap between the fields of homogeneous and heterogeneous catalysis. Here we show that the one‐pot combination of Ru1/CeO2 and Rh1/CeO2 SACs enables a highly selective olefin isomerization‐hydrosilylation tandem process, hitherto restricted to molecular catalysts in solution. Individually, monoatomic Ru and Rh sites show a remarkable reaction specificity for olefin double‐bond migration and anti‐Markovnikov α‐olefin hydrosilylation, respectively. First‐principles DFT calculations ascribe such selectivity to differences in the binding strength of the olefin substrate to the monoatomic metal centers. The single‐pot cooperation of the two SACs allows the production of terminal organosilane compounds with high regio‐selectivity (>95 %) even from industrially‐relevant complex mixtures of terminal and internal olefins, alongside a straightforward catalyst recycling and reuse. These results demonstrate the significance of oxide‐supported single‐atom metal catalysts in tandem catalytic reactions, which are central for the intensification of chemical processes.  相似文献   
103.
The thermal decomposition of graphene oxide (GO) is a complex process at the atomic level and not fully understood. Here, a subclass of GO, oxo‐functionalized graphene (oxo‐G), was used to study its thermal disproportionation. We present the impact of annealing on the electronic properties of a monolayer oxo‐G flake and correlated the chemical composition and topography corrugation by two‐probe transport measurements, XPS, TEM, FTIR and STM. Surprisingly, we found that oxo‐G, processed at 300 °C, displays C?C sp3‐patches and possibly C?O?C bonds, next to graphene domains and holes. It is striking that those C?O?C/C?C sp3‐separated sp2‐patches a few nanometers in diameter possess semiconducting properties with a band gap of about 0.4 eV. We propose that sp3‐patches confine conjugated sp2‐C atoms, which leads to the local semiconductor properties. Accordingly, graphene with sp3‐C in double layer areas is a potential class of semiconductors and a potential target for future chemical modifications.  相似文献   
104.
Ions are ubiquitous in nature. They play a key role for many biological processes on the molecular scale, from molecular interactions, to mechanical properties, to folding, to self-organisation and assembly, to reaction equilibria, to signalling, to energy and material transport, to recognition etc. Going beyond monovalent ions to multivalent ions, the effects of the ions are frequently not only stronger (due to the obviously higher charge), but qualitatively different. A typical example is the process of binding of multivalent ions, such as Ca2+, to a macromolecule and the consequences of this ion binding such as compaction, collapse, potential charge inversion and precipitation of the macromolecule. Here we review these effects and phenomena induced by multivalent ions for biological (macro)molecules, from the “atomistic/molecular” local picture of (potentially specific) interactions to the more global picture of phase behaviour including, e. g., crystallisation, phase separation, oligomerisation etc. Rather than attempting an encyclopedic list of systems, we rather aim for an embracing discussion using typical case studies. We try to cover predominantly three main classes: proteins, nucleic acids, and amphiphilic molecules including interface effects. We do not cover in detail, but make some comparisons to, ion channels, colloidal systems, and synthetic polymers. While there are obvious differences in the behaviour of, and the relevance of multivalent ions for, the three main classes of systems, we also point out analogies. Our attempt of a comprehensive discussion is guided by the idea that there are not only important differences and specific phenomena with regard to the effects of multivalent ions on the main systems, but also important similarities. We hope to bridge physico-chemical mechanisms, concepts of soft matter, and biological observations and connect the different communities further.  相似文献   
105.
The most reliable method to determine the absolute configuration of chiral molecules is X‐ray crystallography, but small molecules can be difficult to crystallize. We report rapid co‐crystallization of tetraaryladamantanes with small molecules as different as n‐decane to nicotine to produce crystals for X‐ray analysis and the assignment of absolute configuration when the molecules are chiral. A screen of 52 diverse compounds gave inclusion in co‐crystals for 88 % of all cases and a high‐resolution structure in 77 % of cases. Furthermore, starting from three milligrams of analyte, a combination of NMR spectroscopy and X‐ray crystallography produced a full structure in less than three days using an adamantane crystallization chaperone that encapsulates the analyte at room temperature.  相似文献   
106.
This review is the sequel to the 2000 report on the recent advances in the chemistry of odorants and it summarizes the developments in fragrance chemistry over the past 20 years. Following the olfactory spectrum set out in that report, trendsetting so‐called captive odorants (patent‐protected ingredients unavailable to the market) are presented according to the main odor families: “fruity”, “marine”, “green”, “floral”, “spicy”, “woody”, “amber”, and “musky”. The design of odorants, their chemical synthesis, and their use in modern perfumery are illustrated with prominent examples. Featured are new fruity odorants that provide signature in the top note, as well as precursor technology. In the green domain, focus is on leafy notes and green pear. New benzodioxepines and benzodioxoles have modernized the marine family and required a revision of the existing olfactophore models. The replacement of Lilial and Lyral kept the industry busy in the floral domain with a plethora of new “muguets”. There was continued activity in the domain of rose odorants, especially in the area of rose ketones. Biotechnology became significant, for example, with Clearwood and Ambrofix, and the principal odorants of vetiver oil in the woody family have been found. Fourth and fifth families of musk odorants were also discovered and populated. Thus, new avenues for further explorations into fragrance chemistry have been opened.  相似文献   
107.
We present the access to [5‐19F, 5‐13C]‐uridine and ‐cytidine phosphoramidites for the production of site‐specifically modified RNAs up to 65 nucleotides (nts). The amidites were used to introduce [5‐19F, 5‐13C]‐pyrimidine labels into five RNAs—the 30 nt human immunodeficiency virus trans activation response (HIV TAR) 2 RNA, the 61 nt human hepatitis B virus ? (hHBV ?) RNA, the 49 nt SAM VI riboswitch aptamer domain from B. angulatum, the 29 nt apical stem loop of the pre‐microRNA (miRNA) 21 and the 59 nt full length pre‐miRNA 21. The main stimulus to introduce the aromatic 19F–13C‐spin topology into RNA comes from a work of Boeszoermenyi et al., in which the dipole‐dipole interaction and the chemical shift anisotropy relaxation mechanisms cancel each other leading to advantageous TROSY properties shown for aromatic protein sidechains. This aromatic 13C–19F labeling scheme is now transferred to RNA. We provide a protocol for the resonance assignment by solid phase synthesis based on diluted [5‐19F, 5‐13C]/[5‐19F] pyrimidine labeling. For the 61 nt hHBV ? we find a beneficial 19F–13C TROSY enhancement, which should be even more pronounced in larger RNAs and will facilitate the NMR studies of larger RNAs. The [19F, 13C]‐labeling of the SAM VI aptamer domain and the pre‐miRNA 21 further opens the possibility to use the biorthogonal stable isotope reporter nuclei in in vivo NMR to observe ligand binding and microRNA processing in a biological relevant setting.  相似文献   
108.
109.
110.
The optical properties of a series of three cyclophanes comprising either identical or different perylene bisimide (PBI) chromophores were studied by UV/Vis absorption spectroscopy and their distinctive spectral features were analyzed. All the investigated cyclophanes show significantly different absorption features with respect to the corresponding constituent PBI monomers indicating strong coupling interactions between the PBI units within the cyclophanes. DFT calculations suggest a π‐stacked arrangement of the PBI units at close van der Waals distance in the cyclophanes with rotational displacement. Simulations of the absorption spectra based on time‐dependent quantum mechanics properly reproduced the experimental spectra, revealing exciton‐vibrational coupling between the chromophores both in homo‐ and heterodimer stacks. The PBI cyclophane comprising two different PBI chromophores represents the first example of a PBI heterodimer stack for which the exciton coupling has been investigated. The quantum dynamics analysis reveals that exciton coupling in heteroaggregates is indeed of similar strength as for homoaggregates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号